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Article Info   Abstract 
- 

Shoreline change poses a significant threat to coastal environments 
and is exacerbated by climate change, hence, it should be monitored for 
better coastal management. This study aimed to determine the shoreline 
change in Tigbauan, Iloilo using remote sensing and GIS techniques. 
Eighteen Landsat 5 and 8 images from 1993 to 2020 were obtained using 
Global Visualization Viewer and processed in Quantum GIS. Shorelines 
were extracted from processed images and analyzed using the Digital 
Shoreline Analysis System (DSAS) in ArcGIS by calculating the net 
shoreline movement, shoreline change envelope, endpoint rate, and linear 
regression rate. Results showed that from 1993 to 2020, erosion had greater 
magnitude, rates, and occurrences than accretion. The average rate was -
1.022 m per year and erosion was forecasted for most areas in 2030 and 
2040. The results can help the government mitigate shoreline erosion risks 
and methods can be extended to other shorelines. 
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Introduction. - The rapid changing of shorelines 
caused by their high vulnerability to natural hazards 
such as floods, storm impacts, sea-level rise, and 
coastal erosion, pose a significant threat to coastal 
environments. With climate change accelerating the 
occurrence of these natural hazards, shoreline 
conditions are worsening and better coastal 
management is needed [1]. Shoreline data is 
fundamental for coastal management and thus, 
studies have investigated methods for the accurate 
detection, mapping, and monitoring of shorelines.  

 
Among the shoreline mapping methods, three 

main categories have emerged: field testing, aerial 
photography, and remote sensing [2]. Among the 
three mapping methods, remote sensing is preferred 
due to its ability to analyze small changes in the coast 
as a result of its very long spectral bands and good 
spatial resolutions. It is also cheaper and can be done 
through more convenient and accurate methods, 
such as satellite imagery [3]. To handle satellite data, 
geographic information system (GIS) programs were 
utilized with satellite imagery to extract shorelines 
and calculate parameters through computer-aided 
tools and methods that reduce manual errors and 
give researchers full control [4]. 

 
Hence, several researchers have studied 

shoreline change using both remote sensing and GIS 

techniques. Louati et al. [5] and Sutikno et al. [6] 
utilized Landsat images and the United States 
Geological Survey Digital Shoreline Analysis System 
(USGS DSAS) extension for ArcGIS Copyright© 
1995-2015 Esri. [7], Foti et al. [8] used Google Earth 
Pro and QGIS, while Flores and Siringan [9] utilized 
Landsat and QGIS. It is notable that among the 
satellite data used for shoreline studies, the Landsat 
series images have been proven to offer the best 
combination of performance and availability due to 
its open access, large coverage, and long-term data 
record features [10]. Among the GIS programs for 
shoreline studies, it was concluded that QGIS is more 
suitable for editing and georeferencing [11], while the 
DSAS extension of ArcGIS makes it a better program 
for shoreline change calculations [7]. 

 
Various statistical methods have also been 

studied and applied to quantify shoreline change, 
with the most common being the endpoint rate 
(EPR), average of rates (AOR), and linear regression 
rate (LRR) [1,12]. However, it is notable that EPR and 
LRR are more effective [13]. Thus, Landsat images, 
ArcGIS-DSAS, QGIS, and EPR and LRR were chosen 
for the analysis of the selected shoreline.  
 

Climate Central [14] identified Tigbauan, Iloilo 
as one of the many Philippine municipalities that will 
submerge by 2040. This finding, along with 
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parameters such as land area, shoreline length, and 
anthropogenic activities, led to the selection of the 
Tigbauan Shoreline as the study area. It was verified 
by the local government unit that there is no data on 
the Tigbauan shoreline positions and changes.  More 
effective coastal management is necessary for these 
areas, which requires shoreline data [15,16]. Thus, the 
study aimed to determine the shoreline change in 
selected areas in Tigbauan, Iloilo using remote 
sensing and GIS techniques [10,12]. 

 
This study will provide the municipality with 

important data on shoreline positions, change values, 
and rates that can help improve their coastal 
management. Moreover, the methods can also be 
replicated to determine shoreline change in other 
areas. Specifically, this research study aimed to: 

 
(i) gather suitable Landsat 4-5 and 8 images from 
1993 to 2020 of the selected shoreline using the 
USGS Global Visualization Viewer (GloVis); 
 
(ii) apply cropping and image enhancement to 
Landsat images using QGIS 3.10.10 A Coruña; 
 
(iii) trace and extract the shorelines using QGIS; 
 
(iv) calculate the net shoreline movement (NSM) 
and shoreline change envelope (SCE) using the 
DSAS extension in ArcGIS 10.4; 
 
(v) calculate the shoreline change rate using the 
endpoint rate (EPR) and linear regression rate 
(LRR) methods in DSAS; and 
 
(vi) evaluate the shoreline change over the years. 
 
Methods. - The methods were divided into three 

main phases: (1) georeferencing of satellite images, (2) 
digitization of georeferenced images, and (3) 
shoreline analysis by calculating the shoreline change 
values and rate statistics.  

 
Study Area. The study area was chosen using 

four parameters based on previous shoreline change 
studies: (1) coastal risk projection of Climate Central 
[14], (2) land area, (3) shoreline length, and (4) locality 
and infrastructure risk [1,12,16]. The first parameter 
identified areas that will be submerged by 2040 [14]. 
The affected land areas were ranked since selecting 
larger areas would benefit more people. The shoreline 
lengths were ranked to minimize zoom and increase 
calculation accuracy. Settlements and infrastructure 
were also considered. Thus, as seen in Figure 1, the 
shoreline bordering Barangay 7 and Baguingin in 
Tigbauan, Iloilo was chosen. It faces the Panay Gulf 
near the Sibalom River and the observed nearby 
infrastructures are residential areas and vegetation 
approximately 15 m from the shoreline. 

 

 
Figure 1. (a) The study area in the Philippines. (b) The areas in 
Tigbauan, Iloilo projected to be below the annual flood level 
in 2040. (c) The shoreline in Tigbauan, Iloilo selected based 
on the set criteria. 
 

Satellite Image Georeferencing. Landsat 5 and 8 
images of the study area from 1993 to 2020 were 
obtained using GloVis. The images were chosen based 
on image clarity, cloud coverage, and time and date of 
image acquisition. The selection process involved 
scanning all the available images that were taken 
during the equinox, specifically within the months of 
August to September. Due to the lack of clear images 
during these months from 1993 to 1998, images from 
February and March were used instead.  The images 
with a clear view of the study area, minimal to no 
cloud cover, and acquisition times ranging from 9:00 
AM to 10:30 AM MPST were selected. Those not 
satisfying the criteria were excluded, resulting in non-
uniform intervals. The primary image acquisition 
date criterion was based on March 20 and September 
23 due to the presence of equinoctial tides. A total of 
18 Landsat images were used in the study, with five 
from the March equinox and 13 from the September 
equinox since during these months, the tidal 
amplitudes are at a maximum [17]. All images were 
subjected to visual comparisons and were ensured to 
have been georeferenced correctly, as determined by 
the lack of shifts in road alignment. 

 
Image Processing and Shoreline Extraction.      The 

acquired Landsat 4–5 and 8 images underwent image 
processing using QGIS. The raster images were first 
uniformly cropped to focus on the identified 
shoreline. The cropped images were then subjected to 
geometric and atmospheric corrections using the 
Semi-automatic Classification Plugin in QGIS [18], 
DOS1 atmospheric correction, and panchromatic 
image sharpening. Raster calculation was then 
performed on the Landsat bands using the Modified 
Normalized Difference Water Index (MNDWI) with 
the formula to extract the shoreline positions [19]. 

 
𝑀𝑁𝐷𝑊𝐼 = (𝐺𝑟𝑒𝑒𝑛 𝐵𝑎𝑛𝑑 −𝑀𝐼𝑅 𝐵𝑎𝑛𝑑)/(𝐺𝑟𝑒𝑒𝑛 𝐵𝑎𝑛𝑑

+𝑀𝐼𝑅 𝐵𝑎𝑛𝑑) 

 
Where:  
Green Band = green band number depending on 

Landsat type 
MIR Band = middle infrared band depending on 

the Landsat type 
 

Land and water features were further 
differentiated by utilizing a threshold value of zero in 
the raster calculator to produce a binary raster image 
which was then polygonized for shoreline tracing.  

 
Data Analysis.      The NSM, SCE, EPR, and LRR 

were calculated using DSAS in ArcGIS 10.4. Three sets 

http://faspselib.denr.gov.ph/sites/default/files/Publication%20Files/crmguidebook8.pdf
https://sci-hub.do/10.1016/j.ocecoaman.2019.105008
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https://www.researchgate.net/publication/232724072_Modification_of_Normalized_Difference_Water_Index_NDWI_to_Enhance_Open_Water_Features_in_Remotely_Sensed_Imagery
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of shoreline data were calculated and the separation 
of shoreline images was based on the image 
acquisition dates. The set 1 and 2 images were 
acquired near the March and September equinox 
respectively, while set 3 contained only the earliest 
and most recent shoreline. The shorelines included in 

each set are shown in Table 1. 
 

Table 1. Shoreline data used in each calculation. 

Set 
Shoreline 
Data (in 
years) 

# of 
shoreline

s 
Calculations 

 

1 1993, 1996-
1998 4 NSM, SCE, 

EPR, and LRR 
 

2 

2004, 2006, 
2008, 

2009, 2011, 
2013-2020 

13 NSM, SCE, 
EPR, and LRR 

 

3 1993, 2020 2 NSM and EPR  

The calculation of NSM, SCE, EPR, and LRR values was     
conducted using the calculate function in DSAS with a 90% 
confidence interval. ArcGIS-DSAS generated reports for the 
three sets. 

 
The NSM is the distance between the oldest and 

earliest shoreline data identified by DSAS based on 
the exact shoreline dates parameter inputted in 
ArcGIS. SCE is the greatest distance between each 
transect. For NSM, positive and negative values mean 
accretion and erosion respectively, while the SCE is 
always positive. Both NSM and SCE are in meters. For 
the EPR, DSAS divided the NSM by the time elapsed 
between the two shorelines but the variation of the 
rate over time was not considered. The LRR is the 
slope of the line generated by a least-squares 
regression fit to all available shoreline points for each 
transect. The regression line is the minimum sum of 
the squared residuals. The squared residual for a data 
point is the square of the offset distance from the 
regression line. Both rates are in meters per year. 
 

Results and Discussion. - The results and 
discussion were divided into six parts namely: 
acquired satellite images, processed satellite images, 
traced and extracted shorelines, shoreline change 
values, shoreline change rates, and shoreline 
forecasting. All values were generated using the 
ArcGIS-DSAS function and can be seen in the raw 
data tables found in the supplementary data section of 
the journal. Sets 1 and 2 each had a total of 283 
transects while set 3 had 294 transects in total.  

 
Acquired Satellite Images.     There were 18 Landsat 

images gathered in total, with nine Landsat 4-5 images 
from 1993 to 2011, and another nine Landsat 8 images 
from 2013 to 2020. The images obtained all had 
spatial resolutions of 30 m, contained clear views of 
the shoreline, and were captured near the two 
equinoxes during times ranging from 9:00 AM to 
10:30 AM MPST. The tide conditions varied with 
heights ranging from -0.03 m to 1.67 m. It was 
determined that three images in set 1, eight images in 
set 2, and one image in set 3 were taken during low 
tide. The lack of uniform conditions contributed to 
increased positional change due to the comparison of 
shorelines during high and low tides. The images 
from set 1 and set 2 were also taken in different 
monsoon seasons, which may affect the tidal 
conditions. No visible deviations were observed 

during the conduct of visual analyses, thus, the 
georeferenced images were concluded to be correct. 

 
Processed Satellite Images.     All satellite images 

were successfully subjected to image processing 
techniques starting with uniform cropping, 
atmospheric correction, and RGB enhancement. The 
enhanced images increased shoreline definition due 
to the color contrast in the land and water areas and 
the use of the water index enhanced the open water 
features and suppressed the built‐up land noise. This 
enabled the creation of binary raster images with 
clearly defined separations of the land and water 
features for easier shoreline extraction.  

 
Traced and Extracted Shorelines.     All vector images 

were cropped and traced based on the study area 
coordinates. The x-components were the same for all 
images. However, the y-components of the traced 
endpoints varied, showing that the shoreline changed 
over the years. The traced shoreline vectors had 
sharpened edges due to the 30 m x 30 m pixels, but 
were not subjected to smoothing to preserve the 
defined geographical accuracy of the shorelines. 
Three datasets, shown in Table 1, were then created 
where images taken near the same equinox were 
grouped together to ensure uniform conditions for 
shoreline analysis.  

 
Shoreline Change Analysis.    The shoreline change 

experienced in the study area was analyzed using the 
SCE and NSM values generated by ArcGIS-DSAS and 
can be found in the supplementary data section. 

 
Shoreline Change Envelope.    The SCE represents 

the greatest distance among all intersecting shorelines 
in a given transect. This alone does not indicate if the 
change is erosional or accretional since it is always 
positive. The SCE calculations involved set 1 and set 2 
shoreline data, shown in Figures 2.a and 2.b, 
respectively. 

 
The shorelines in set 1 had an average SCE 

distance of 30.50 m. The greatest distance of 96.24 m 
in transect 146 showed that the shoreline eroded from 
1993 to 1996. For set 1, 55 null values or transects with 
no observed shoreline position changes were 
generated, resulting in a minimum distance of 0. 
These null values were attributed to the low Landsat 
4-5 resolution which prevented the detection of 
changes below  30 m [20].  

 
For set 2, the 13 shorelines were calculated to have 

an average SCE distance of 61.54 m which is 
approximately two times greater than that of the 
previous set or an increase of 101.77%. The greatest 
distance observed in transect 61 showed that the 
shoreline accreted by 113.77 m from 2013 to 2020. In 
set 2, no null values were generated and a minimum 
distance of 30.01 m was observed in transect 8.  

 
The SCE values show that in the period from March 
1993 to 1998, shoreline changes ranged from 0 m to 
96.24 m while from September 2004 to 2020, changes 
ranged from 30.01 m to 113.77 m. These results do not 
indicate whether the observed changes are mostly 
erosional      or      accretional      and      thus,      require 
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supplemental data from the NSM values. However, it 
can be said that the greatest changes observed in sets 
1 and 2 are erosional and accretional respectively. 
 

Net Shoreline Movement.     The NSM represents the 
distance between the oldest and most recent 
shorelines for each transect. The NSM values of the 3 
sets were generated and analyzed in relation to the 
SCE values and contained both the negative or 
erosional and positive or accretional values. The NSM 
calculations involved all three sets of shoreline data, 
shown in Figures 3.a for set 1, 3.b for set 2, and 3.c for 
set 3. 

For set 1, among the 283 transects, 47% or 133 were 
erosional, 25.09% or 71 were accretional, while 27.9% or 
79 were null. The maximum negative value of -64.16 
m at transect 146 also had the greatest SCE of 96.24 m 
from 1993 to 1996. This suggests that from 1996 to 
1998, transect 146 accreted by 32.08 m. The shoreline 
changes from March 1993 to 1998 ranged from -64.16 
m to 63.17 m. The average distances indicate that 
despite having greater accretion in terms of 
magnitude, the presence of more erosional transects 
led to an average distance of -6.04 m, which is 
considered erosional. 

 
 

 
   (a)             (b) 
 

Figure 2. The shoreline change envelopes of (a) set 1, and (b) set 2. 
 

 
  (a)             (b)             (c) 
  

Figure 3. The net shoreline movements of (a) set 1, (b) set 2, and (c) set 3. 
 

 
  (a)             (b)             (c) 
 

Figure 4. The endpoint rates of (a) set 1, (b) set 2, and (c) set 3. 
 

 
   (a)              (b) 
 

Figure 5. The linear regression rates of (a) set 1, and (b) set 2. 
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Relative to set 1, the average erosion in set 2 
decreased by 13.58 m while the average accretion 
decreased by only 3.22 m.The positive distances were 
also greater than the negative distances. These show 
that from 2004 to 2020, more parts of the shoreline 
eroded but the accretional areas had greater changes 
resulting in an average of only -1.99 m, which is 
67.05% less than that of set 1.  

 
Set 3 had the most and least number of erosional 

and accretional transects with 90.82% and 9.18% of the 
total, respectively. The shoreline changes ranged 
from -103.37 m to 25.1 m. The high maximum erosion 
and number of erosional transects contributed to a 
high average erosion of -41.3 m, while the average 
accretion was only 19.25 m. Thus, the average NSM 
from 1993 to 2020 was -35.74 m. 

 
The average NSM in set 3 is significantly greater 

than that of sets 1 and 2. This high average can be 
attributed to the high shoreline erosion from 1998 to 
2004 since the changes during this period were not 
investigated due to image availability.   

 
Shoreline Change Rate Analysis.     The rate of 

change experienced by the shoreline was calculated 
using the EPR and LRR methods in ArcGIS-DSAS and 
can be found in the supplementary data section. 

 
Endpoint Rate.     The EPR calculates the shoreline 

change rate based on only two shorelines. The average 
NSM distances were divided by the time elapsed 
between the oldest and most recent shorelines to 
generate the EPR values. The EPR calculations 
involved all three sets of shoreline data, shown in 
Figures 4.a for set 1, 4.b for set 2, and 4.c for set 3. 

 
For set 1, the null transects prevented DSAS from 

determining the average CI associated with rates, 
reduced n, uncertainty, and transects with statistically 
significant erosion or accretion. The maximum rates 
for set 1 are significantly greater than that of the other 
sets while the average rates lowered to values closer to 
that of the other sets, leading to an EPR of -1.21 m per 
year. 

 
For set 2, 35.94% of the 192 erosional transects and 

96.70% of the 91 accretional transects were statistically 
significant. Accretional rates were also greater than 
the erosional rates. These explain why despite having 
more erosional transects, the average NSM and EPR 
of this set are low, leading to set 2 having the least EPR 
of -0.13±0.89 m per year. 

 
Set 3 had the lowest maximum erosion rate and 

an average erosion rate that is only 50.83% of set 1. 
However, it had the lowest accretion rates, leading to 
set 3 having the highest average EPR of -1.32±0.52 m 
per year.  

 
Linear Regression Rate.     The LRR used all 

available shorelines to determine the change rate and 
was performed for sets 1 and 2, shown in Figures 5.a 
and 5.b, respectively. 

 
The LRR of set 1 had fewer null transects than the 

EPR, showing that more changes occurred in 1996 and 
1997. The maximum rates increased by less than 1 m 
per year with the addition of the 1996 and 1997 
shorelines, but the average rates significantly 

increased by more than 100% of the EPR rates. This 
showed that the shoreline experienced more changes 
in 1996 and 1997 compared to just 1993 and 1998. 
However, the LRR of -1.23 m per year differed from 
the EPR by only 0.02 m, suggesting that despite 
having more changes, the erosion and accretion rates 
still balanced out to result in a similar average rate. 

 
The LRR of set 2, shown in Figure 5 (b), had more 

erosional and less accretional transects than the EPR. 
This was also true for transects with statistically 
significant erosion and accretion. These can be 
attributed to the shorelines that were not included in 
the EPR calculations. The average erosion and 
accretion rates were greater and lesser, respectively, 
than the EPR. The LRR of -1.22±0.72 m per year is 
nine times the EPR which also indicates that despite 
the few differences in the 2004 and 2020 shorelines, 
the shorelines between them experienced more 
erosion and less accretion, resulting in the high 
erosional LRR.  

 
Shoreline Forecasting.     Using the LRR of set 2, the 

DSAS forecaster predicted that in 2030 and 2040, 
erosion will occur in most transects while accretion is 
observed in areas near the shoreline ends but are 
mixed with erosional transects. The part of the 
shoreline from 10° 40' 7.413" to 10° 40' 19.7292"N 
latitude and 122° 23' 27.4266" to 122° 24' 12.4158"E 
longitude is expected to erode by 2030 and 2040 and 
these areas contain most of the human settlements in 
the study area. 

 
Figure 6. The forecasted shoreline positions for 2030 and 
2040. 
 

Limitations.     The study utilized shorelines from 
years with Landsat images that fit the set criteria, thus, 
not all years from 1993 to 2020 were included in the 
calculations. Due to availability, low-resolution 
images were utilized resulting in the presence of null 
transects which prevented the calculation of certain 
values. No physical investigations were conducted 
due to safety concerns amidst the pandemic. Further 
investigation of the factors affecting the identified 
shoreline changes, as well as the verification of the 
predicted shoreline positions, was not performed. 

 
Conclusion. - The shoreline change values 

showed that more parts of the shoreline eroded from 
2004 to 2020 but a greater magnitude of erosion was 
observed from 1993 to 1998. The erosion from 1993 to 
2020 was significantly greater than that of the other 
sets, suggesting that most occurred from 1998 to 2004. 
This was supported by the EPR and LRR calculations 
which showed that the 1993 and 2020 shorelines also 
had the least accretion rates and the most and least 
transects with statistically significant erosion and 
accretion respectively. It can be concluded that the 
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shoreline in Tigbauan, Iloilo experienced more 
erosion than accretion in both occurrence and 
magnitude from 1993 to 2020. The average shoreline 
change rates ranged from -0.13 to -1.32 m per year, 
showing that the shoreline is eroding at an average 
change rate of -1.022 m per year. The average LRR 
from September 2004 to 2020 was used to forecast 
that erosion will continue in 2030 and 2040 for the 
majority of the shoreline. These data can be used to 
improve the municipality’s coastal management by 
identifying which areas are vulnerable to shoreline 
erosion and coastal area loss. 

 
Recommendations. - More shoreline images 

with better resolutions are recommended to provide 
more accurate shoreline change rates. An effective 
smoothing function with a clearly defined accuracy 
may also be applied to extracted shoreline vectors 
prior to shoreline calculation. Moreover, adding the 
tidal level and monsoon season to the image criteria 
and considering the digitization uncertainty will 
enable more uniform shoreline conditions and 
accurate calculations. Physical shoreline inspection 
should be conducted to obtain more information that 
could contribute to the analysis. Supplementary data 
such as daily rainfall, typhoon tracks, and conducted 
human activities are recommended to understand the 
factors affecting shoreline change. Lastly, the 
shoreline change rate should be verified further so it 
can be utilized to accurately predict future shoreline 
positions. 
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