Publiscience Vol. 8 Issue 1

Determining the maximum number of transaction records that

the Apriori algorithm can scan in 90 seconds

CHRISTIAN DALE P. CELESTIAL, BASSY LEIAH V. IBARRETA, RUTH SP G. TIRON, MARIA MILAGROSA

A.NULLA, and ZENNIFER L. OBERIO

Philippine Science High School - Western Visayas Campus, Brgy. Bito-on, Jaro, Iloilo City 5000, Department of Science

and Technology, Philippines

Abstract

The Apriori algorithm is a data mining algorithm used for frequent itemsets. It is easy and simple
to use, but its main disadvantage is its inefficiency in scanning large databases. Studies about the
algorithm focus on improving its efficiency in large databases, but there is no definite value yet as to
the maximum number of transactions that the Apriori algorithm can process in 90 seconds, the
tolerable offline waiting time for the human attention span. The methods of this study consist of the
hardware and database acquisition, program implementation, data collection, and data analysis. Five
hundred transactions were first scanned using the algorithm. It was determined that the classic Apriori
algorithm can process 1,310 transaction records in 90 seconds, with a percentage prediction error of
0%. The percentage prediction error was computed using the actual and outputted frequencies.

Keywords: Apriori algorithm, data mining, frequent itemsets, percentage prediction error, accuracy

Introduction. Data mining is a process that
analyses large databases in order to discover
meaningful patterns [1]. The Apriori algorithm is a
classic data mining algorithm for frequent itemset
mining. It is under the association rule technique of
data mining which was initially introduced by Rakesh
Agrawal [2]. It enumerates all of the frequent itemsets
in a database [3] and is considered best to be used for
closed itemsets [2].

Although the algorithm is easy and simple to use,
its main disadvantage is that it is not suitable for large
databases because its performance declines as the
number of transaction records increase. When the
database contains a large number of transaction
records, scanning the database for frequent itemsets
becomes time-consuming [4]. Previous studies
pointed out that the algorithm needs to scan the
database several times [5], that it is limited to only a
small database [6], and that the time that it takes for
the algorithm to scan the database increases as its size
increases [7]. The performance of the algorithm in
dense data is also shown to decline due to the large
number of long patterns [8]. Aggarwal and Sindhu [9]
discovered that the Apriori algorithm works
inefficiently in terms of memory requirement when
large numbers of transaction records are considered.

According to the study by Al-Maolegi and Arkok
[10], the Apriori algorithm has two parameters to
consider, namely the minimum support and
confidence level, which are both set by the user. The
scanning time of the algorithm is affected by the
minimum support because it indicates the number of
itemsets to be scanned by the algorithm. The
minimum support is used to exclude itemsets in the
results which have a support less than the set
minimum support. The support of an itemset is the
number of transactions that contain all the items of
that itemset. A small minimum support would mean

that a large number of itemsets will be considered in
the scanning process whereas, a large minimum
support would mean that the algorithm would be
considering only few itemsets.

Studies about improving the algorithm’s
performance focus on improving its scanning time
and accuracy. Different solutions and improvements
such as the Bit Array Matrix by Vijayalakshmi and
Pethalakshmi [7] improved the algorithm’s scanning
time and accuracy in large databases. Other solutions
are those by Kaur [8] which based the improvement
of the algorithm on the accuracy alone, and the
studies by Rehab et al. [4], Singh et al. [11], and Najadat
et al. [12] which improved the algorithm’s scanning
time only.

Although some studies have already described
the number of transaction records scanned by the
algorithm and the algorithm’s scanning time [6,12],
there is no definite maximum value yet as to the
number of transaction records that can be scanned in
90 seconds, the tolerable offline waiting time for the
human attention span. [13].

This study aimed to determine the size of the
database which Apriori can process accurately at a
tolerable waiting time, which is 90 seconds, given that
the complexity of the database and the hardware used
are constant. Specifically, it aimed to:

(i) determine the algorithm’s scanning time and
accuracy in a database with an increasing number
of transaction records; and

(i) determine the maximum number of
transaction records that the algorithm can
process within the tolerable waiting time of 90
seconds, with a percent error of 0%.

How to cite this article:

CSE: Celestial CDP, Ibarreta BLV, Tiron RSG, Nulla MMA, Oberio ZL. 2020. Determining the maximum number of transaction records that

the Apriori algorithm can scan in 90 seconds. Publiscience. 3(1):128-131.

APA: Celestial, C.D.P., Ibarreta, B.L.V,, Tiron, R.S.P,, Nulla, M.M.A., & Oberio, Z.L. (2020). Determining the maximum number of transaction
records that the Apriori algorithm can scan in 90 seconds. Publiscience, 3(1):128-131.

Determining the maximum no. of transaction records that Apriori can scan | 129

The results of this study will benefit researchers
who aim to further enhance the performance of the
Apriori algorithm. The number of transactions
scanned by the enhanced algorithm can be compared
with the quantified results from this study.

Methods. This study aimed to determine the
size of the database which Apriori can process
accurately in 90 seconds, given that the complexity of
the database and the hardware used are constant.
Specifically, it aims to determine the algorithm’s
scanning time and accuracy in a database with an
increasing number of transaction records. It also aims
to determine the maximum number of transaction
records that the algorithm can process within 90
seconds [13], with a percent error of 0%.

Hardware and Database Procurement. A laptop
with an Intel Core i5 3.4GHz Processor with 4GB RAM
was used in the testing process. A grocery database
having 9,835 transaction records in total was acquired
from the website of Salem Marafi [14]. It contained a
collection of receipts with each line representing one
(1) receipt and the items purchased. The database was
converted from a comma-separated values (.csv) file
to a text (.txt) file by replacing the commas with
spaces, since the source code used required plain text
for its input.

Program Implementation. The Java source code
of Apriori was acquired from Github [15] and was
modified to output the execution time of the
algorithm and the frequency of the frequent itemsets.
The modified source code was then checked by two
consultants who had a background on data mining.

Data Collection. The testing process had three
trials for each set of transactions, with the execution
time and frequency tabulated after each set of trials.
Five hundred transaction records were initially used
during the testing process, based on the study of
Najadat et al [12], with an increment of 200
transaction records added after each set of trials,
following the methods of Sahu et al. [6]. The process
was repeated until the average scanning time of the
algorithm exceeded 90 seconds [13], after which the
transaction records added were reduced by half until
the scanning time reached 90 seconds.

A minimum support of five was used throughout
the whole testing process.

It must be noted that the Java IDE used in the
study was closed after each trial to ensure that the
program’s memory consumption did not interfere
with the algorithm’s scanning time.

Data Analysis. The average scanning time of the
algorithm was first graphed using a scatter chart in
Microsoft Excel. A trendline was then added.

The percentage prediction error (PPE) was
analyzed using the outputted frequency (OF) and
actual frequency (AF). It was computed using the
equation below [16],

(OF — AF)
Ea——

PPE = —

100

Using the frequency displayed by the program,
which served as the outputted frequency, and the
actual frequency of the frequent itemsets, the
percentage prediction error was determined.

In order to determine the actual frequency of
each itemset, the transaction records from the
database were transferred to a word document. Next,
the itemsets that were displayed by the program were
used as a guide for the manual searching of each item
contained in the frequent itemset. The items
contained in the itemset were searched individually to
remove the transaction records which did not contain
the items. This was repeated until all the items in the
frequent itemset were located in the database. The
remaining transaction records contained all the items
in the frequent itemset, and these transaction records
were counted manually. The same process was
repeated for all the frequent items displayed by the
program. The number obtained served as the actual
frequency, which was used in the calculation for the
percentage prediction error of the algorithm.

Safety Procedure. ~ Ensuring the privacy of users’
data and the integrity of the data was a key ethical
issue which the group took into account. The code
used and modified for the purpose of this study was
cited, acknowledging the creator of the said code.
Proper credit was also given to the source of the
database used in the study.

Results and Discussion. Table 1 shows the
average scanning time for each set of transaction
records. It can be observed that the scanning time of
the algorithm increased between 1,100 and 1,300
transaction records, where the scanning time rose
from 15.25 seconds to 77.121 seconds. The maximum
number of transaction records that the algorithm
processed under 90 seconds can also be seen in Table
1 - in this case, the algorithm was able to process 1,310
transaction records. The average scanning time of the
algorithm for 1,310 transaction records was 82.53
seconds.

Table 1. The average scanning time of each set of transaction
records.

Number of Transaction Average Scanning

Records Time (s)
500 0.536
700 1.756
900 4.953
1100 15.25
1800 77121
1310 82.53
1311 91.57
1350 103.238
1400 117.551
1500 148.69

This increase in the scanning time of the
algorithm can also be seen in the graph in Figure 1,
where it can be observed the increase was between
1,100 to 1,300 transaction records. This is also seen in
the trendline of the graph in Figure 1, as the average
scanning time is seen to rise exponentially as the
number of transaction records increase.

130 | Celestial et al.

240
y = 0,0248¢0 0061
210 R*=0.9893

180

150

120

Average Scanning Time (seconds)

300 700 900 1100 1300 1500

No. of Transaction Records

Figure 1. The average scanning time of the algorithm and
the corresponding number of transaction records.

The accuracy of the algorithm was computed
using the equation for percentage prediction error.
The percentage prediction error of the first itemsets
in every set of transaction records was 0% as shown in
Table 2.

Table 2. Percent error of the algorithm computed using the
actual and outputted frequency.

%Ir l;g;ggigfl Actual Outputted Percenot

Records Frequency Frequency Error (%)
500 5 5 0
700 5 5 0
900 5 5 0
1100 6 6 0
1300 5 5 0
1310 5 5 0
1311 5 5 0

The results show that the highest number of
transaction records that the classic Apriori algorithm
can process under 90 seconds is 1,310 transaction
records. The average scanning time of the algorithm
in scanning 1,810 transaction records was 82.53
seconds.

The time complexity of the classic Apriori
algorithm is O(2) [17]. Exponential (base 2) running
time means that the calculations performed by an
algorithm double every time as the input grows. This
can be supported by Figure 1 due to the exponential
trendline having an R? = 0.9893 as compared to other
types of trendlines which have a lesser R? value.

In the study by Vijayalakshmi and Pethalakshmi
[18], the classic Apriori algorithm was able to scan
about 1,750 transactions in under 0.12 seconds. In the
current study, it can be observed that the algorithm
scanned 1,100 transaction records in 15.25 seconds,
which shows that the algorithm was able to scan less
transaction records in a greater amount of time. The
difference in the number of transaction records
scanned by the algorithm may have been due to the
difference of the databases used by the researchers. A
numerical database with 1’'s and O’s was used in the
study by Vijayalakshmi and Pethalakshmi [18], while a
grocery database, composed of strings, was used in
this study.

Another variable that may have caused the
differences between the studies would be the

minimum support. The performance of the
algorithm is strongly dependent on its minimum
support [19], since having a lesser minimum support
would make the algorithm more flexible in accepting
associations, requiring more time for it to process.

In relation to this, the database had varying
number of items in the itemsets, which could have
affected the scanning process of the algorithm. This is
because having lesser number of items in an itemset
would reduce the number of transaction records for
an association. Thus, fewer associations will be
considered, due to having a support less than the
minimum support [8].

The results of this study could be used as a basis
for researchers who aim to study the same algorithm
in the future. Since the classic Apriori algorithm is still
being improved [7], researchers may use the results of
this study to compare the scanning time of the classic
Apriori algorithm with their improved version of the
algorithm. For example, if the number of transaction
records scanned by their improved algorithm
surpasses 1,310 records, then it can be determined that
the improved Apriori algorithm is effective. The
trendline acquired in the study could be used to
predict the increase of the scanning time of the
algorithm during the testing process, given the same
parameters.

The methods of this study could be adopted by
researchers and compare their results with this study
to aid in the improvement of the classic Apriori
algorithm, provided that the database, minimum
support, and processor used will be similar to those
used in this study.

Limitations. The limitations of this study include
its applicability to the Java source code of the classic
Apriori algorithm. the varying number of items in
each itemset of the database and the inefficiency of
the testing process.

If the number of items in the itemset is lesser, the
number of transaction records for an association
would be lesser as well. This leads to fewer
associations being considered, due to having support
less than the minimum support [8].

The hardware used in the testing process could
have also limited the number of transaction records
scanned because better hardware would be able to
scan more transaction records in a short amount of
time according to Aho et al. [20].

The inefficiency of the testing process is a also a
limitation since the source code used could not read
text files automatically. The contents of the database
had to be copied and pasted to the source code, which
consumed an additional two minutes for each trial.

Conclusion. Although the Apriori algorithm is
easy and simple to use, its main disadvantage is its
inefficiency in scanning large databases. Studies
performed on the algorithm have focused on
improving it, and some studies have already
described the number of transaction records scanned
by the algorithm and the algorithm’s scanning time.
There is, however, no definite maximum value yet as
to the number of transaction records that can be

Determining the maximum no. of transaction records that Apriori can scan | 131

scanned in a tolerable amount of time, which is 90
seconds. The results of the study showed that this
value is 1,310 transaction records with a percentage
prediction error of 0% throughout the whole process.
The factors that affect the scanning time of the classic
Apriori algorithm are the processor of the hardware
and the minimum support. These variables were kept
constant throughout the whole study. This study can
aid the improvement of the algorithm by using the
results as a basis for future studies.

Recommendations. In order to improve this
study, it can be performed using other types of
Apriori algorithms. It can also be tested using the
source code of a different programming language
such as C++ and Python. Other types of hardware can
be used in the testing process to determine the
hardware’s effect on the scanning time of the
algorithm. It is also recommended to redesign the
used source code to be able to process a database in a
text file rather than manually copying and pasting
items from the database to the source code. For future
studies, the columns of the database must be filled out
when testing the algorithm. There must be no null
value in any column of the database so that the
number of items in each transaction record will be
consistent. Through this, the minimum support will
be applicable to all the transaction records.

Acknowledgement. = The group would like to
extend their gratitude to Mr. Christian Chiu and Mr.
Marc San Pedro for taking the time to evaluate the
group’s modified source code.

References

[1] Neha D and Vidyavathi BM. 2015. A survey on
applications of data mining using clustering
techniques. Int] Comput Appl. 126(2): 7-12.

[2] Prithiviraj P and Porkodi R. 2015. A comparative
analysis of association rule mining algorithms
in data mining: A study. Am] Comput Sci Eng
Surv. 3(1): 98-119.

[8] Yabing J. 2013. Research of an improved Apriori
algorithm in data mining association rules. Int
] Comput Comm Eng. 2(1): 25-27.

[4] Rehab A, Alwa H, Patil AV. 2013. New matrix
approach to improve Apriori Algorithm. Int J
Comput Sci Netw Soln. 1(4): 102 -109.

[5] WeiY, Yang R, Liu P. 2009. An improved Apriori
algorithm for association rules mining.
Proceedings of a symposium held at the 2009
Institute of Electrical and Electronics Engineers
International Symposium on IT in Medicine an
Education; Jinan, China.

[6] Sahu A, Dhakar M, Rani P. 2015. Comparative
analysis of Apriori algorithm based on
association rule. Int] Comp Sci Comm. 6(2):18-
21.

[71 Vijayalakshmi V and Pethalakshmi A. 2013.
Mining of frequent itemsets with an enhanced
Apriori algorithm. Int] Comput Appl. 81(4): 1-
4.

[8] Kaur G. 2014. Improving the efficiency of Apriori
algorithm in data mining. Int J Sci Eng Tech.
2(5): 315-326.

[9]1 Aggarwal S and Sindhu R. 2015. An approach to
improve the efficiency of the Apriori
algorithm. Peer] PrePrints [Internet]. [cited
2018 Nov 21]; 1-18. Available from:
https://doi.org/10.7287/peerj.preprints.1159v

[10] Al-Maolegi M and Arkok B. 2014. An improved
Apriori algorithm for association rules. Int]
Nat Lang Comp. 3(1): 21-29.

[11] Singh J, Ram H, Sodhi JS. 2013. Improving

efficiency of Apriori algorithm using
transaction reduction. Int J Sci Res Pub. 3(1): 1-
4.

[12] Najadat HM, Al-Maolegi M, Arkok B. 20138. An
improved Apriori algorithm for association
rules. Int Res] Comput Sci Appl. 1(1): 1-8.

[18] Antonides G, Verhoef PC, van Aalst M. 2002.
Consumer perception and evaluation of
waiting time: A field experiment.] Consum
Psychol. 12(3): 193-202.

[14] Salem. 2014. Market basket analysis with R
[Internet]. Salem Marafi [cited 2019 Sept 13].
Available from: http://www.salemmarafi.com/
code/market-basket-analysis-with-r/

[15] Umanghome. 2016. Apriori implementation in
Java [Internet]. Github Gist [cited 2019 Sept 9].
Available from: https://gist.github.com/umang
home/2clee7f08eb99dc9fde2512bedfd36fd

[16] Wu G, Baraldo M, Furlanut M. 1995. Calculating
percentage prediction error: A user's note.
Pharmacological Res. 32(4): 241-248.

[17] Pai GAV. 2008. Data structures and algorithms:
Concepts, techniques, and applications. India:
McGraw Hill Education, 12-19 p.

[18] Vijayalakshmi V and Pethalakshmi A. 2015. An
efficient count based transaction reduction
approach for mining frequent patterns.
47(2015):52-61.

[19] Mehta D and Samvastar M. 2017. Implementation
of improved Apriori algorithm on large dataset
using Hadoop. Asian J] Comput Sci Eng. 2(6):
10-13

[20] Aho AV, Hopcroft JE, Ullman JD. 1974. The design
and analysis of computer algorithms. Reading
(MA): Addison-Wesley. 2

